				17BPE301	- Well Logg	ging and For	mation Eva	luation			
Teaching Scheme						Examination Scheme					
т	т	D	C	Hrs/Week		Theory		Practical		Total	
L	1	Г	C		MS	ES	IA	LW	LE/Viva	Marks	
3	1	0	4	4	25	50	25			100	

Introduction to Formation Evaluation, Mud Logging and Coring

Introduction to petroleum formation evaluation: Basic concepts, direct Methods: Mud logging, Hydrocarbon staining on the cuttings, Lithology and texture of cutting samples, Evaluation of geopressurized zone by mud logging, Coring techniques and analysis; Indirect Methods: LWD/MWD & Wireline Logging, Instruments/Tools details, Processes of recording and representation (Log charts with tracks). Correlation of core and logging data.

Unit II

Open Hole Logging

Tool physics, measurement principles and data interpretation of the following including quantitative and qualitative analysis techniques: Caliper log; Electrical logs – SP and Resistivity logs (conventional, induction and micro devices), Radioactive Logs – Gamma Ray (natural and spectral), Neutron, Density and Elemental capture spectroscopy logs; Sonic Logs including Dipole shear sonic, Nuclear magnetic resonance (NMR).

Unit III

Data Integration and Formation Evaluation

Quantitative Analysis methods for lithology, shale volume, saturation from various logs

Unit IV

Cased Hole Logging and Production Logging

CBL /VDL logs, Advance Logging tools including Casing Inspection tools, Formation micro imaging tool, , Proppant Tracer Log, Ultra sonic imaging tool; Production Logging: Introduction, type of tools, principles, limitations & applications

Total Hours : 39

Texts and References:

- 1. Malcom Rider, Second Edition, 2002: The Geological Interpretation of well logs, Rider-French Consulting limited
- 2. Oeberto Serra & Lorenzo Serra, 2004 : Well logging data acquisition and applications, Edition Serralog, France
- 3. Jorden J R and Campbell F. L., , SPE, New York, 1986: Well Logging Vol. 1 and 2
- 4. Ellis, D. V. and Singer, J. M. 2nd edition, 2007: Well logging for Earth Scientist, Springer
- 5. Toby Darling, Well logging and Formation Evaluation, Gulf Professional Publishing, Elsevier Science

Hours: 12

Hours:12

Hours : 08

	17BPE302 - Production Engineering I										
Teaching Scheme					Examination Scheme						
т	т	D	C	Hrs/Week		Theory		Practical		Total	
		1	C		MS	ES	IA	LW	LE/Viva	Marks	
3	1	0	4	4	25	50	25			100	

Petroleum Production System(Surface & Subsurface Equipments)

Role of Production Engineer/activities performed at various levels of field development and its exploitation. Petroleum Production System-Well Head Equipment, Charismas tree, valves, hangers, flow control devices, packers, tubular and flow lines.

Unit II

Well Completion&Testing

Introduction, Well Completion Methods and string components, Different types/designs of well Conventional and unconventional tubular configurations, Conventional & periodic completion. production testing, Perforating oil& gas wells-conventional and unconventional techniques viz, through tubing and tubing conveyed underbalanced perforation techniques, type size and orientation of perforation holes. Well activation, use of compressed air and liquid Nitrogen. Smart wells-intelligent completion.

Unit III

Introduction to Artificial Lift Techniques

Principle and application of artificial lift methods- Rod Pump (SRP/PCP), Gas Lift (Continuous/Intermittent), Electric submersible Pump (ESP), Hydraulic lifts (Jet Pump) etc.

Unit IV

Production System Analysis & Optimization

Reservoir considerations, Flow through porous medium around the wellbore, Introduction to inflow performance, Productivity index. PVT properties of oil, water and gas. Flow efficiency, Darcy's Law, Formation damage diagnosis, Skin effect, IPR in case of different drive mechanism. Vogel IPR equation. Pressure loss in tubing, multiphase flow regimes. . Choke performance, types of chokes. Overall production system pressure losses, Nodal system Analysis.

Total Hours: 39

Texts and References:

- 1. Dr. GuoBoyun, Computer Aided Petroleum Production Engineering
- 2. H Dale Begg, Production Optimization, OGCI Publication, tulsa.
- 3. Kermit Brown, Technology of artificial lift method –. Vol2a ,2b.Penwell publishing company, Tulsa.

Hours: 08

Hours: 11

Hours: 10

	17BPE303 - Petroleum Refinery Engineering										
	Те	achin	g Sch	eme	Examination Scheme						
т	т	D	C	Hrs/Week		Theory		Practical		Total	
L	1	r	C	Hrs/ week	MS	ES	IA	LW	LE/Viva	Marks	
3	0	0	3	3	25	50	25			100	

Origin-Exploration and production of petroleum-Types of crudes, crude composition-Characteristics and classification-Crude oil properties. IS 1448: Standard -Testing of Petroleum crude-Products: Specifications and their Significance.

Unit II

Pre-treatment of crude for Refining-Dehydration and desalting-Atmospheric distillation, Vacuum distillation of residue products-Treatment techniques for vacuum distillates with different processes like solvent extraction –Deasphalting, dewaxing, hydro fining, catalytic dewaxing and clay contact process– Production of lubricating oils. Hydro cracking, principles, process requirements, product yields and qualities and resid-cracking -Hydrotreating -Sulphur removal, hydro finishing.

Unit III

Thermal cracking - Processes, operating parameters, feed stock selection and product yields, Advantages -Types and functions of secondary processing - Visbreaking - Processes, operating parameters and advantages-Coking -Operating parameters and advantages. Fluid catalytic cracking -processes, operating parameters, feed stock selection and product yields -Advantages.

Unit IV

Principle, Processes, Operating Parameter and advantages of Reforming – Isomerisation – Alkylation – Polymerization. Asphalt manufacture, Air blowing technology, Bitumen Types and their properties, Acid gas removal and sulphur removal techniques.

Total Hours : 39

Texts and References:

- 1. Dr. B.K. Bhaskara Rao, Modern Petroleum Refining Processes (5th Edition)
- 2. Dr. B.K. Bhaskara Rao, A Text Book on Petrochemicals.
- 3. Marshall Sitting, Dryden's Outlines of Chemical Technology

Hours: 09

Hours: 10

Hours: 10

	17BPE304 - Unconventional Hydrocarbon Energy Resources										
	Те	achin	g Sch	eme	Examination Scheme						
т	т	D	C	Hrs/Week		Theory		Practical		Total	
L	1	Г	U		MS	ES	IA	LW	LE/Viva	Marks	
2	0	0	2	2	25	50	25			100	

Unit - I

Introduction: Energy Facts

Survey of energy resources; Global vis-à-vis Indian energy scenario – demand and supply, and future projection; relation between GDP and energy demand; introduction to conventional, unconventional, renewable, nonrenewable energy resources in general, and unconventional hydrocarbon energy resources in particular; effect of use of various energy resources on environment/climate – Keeling curve; clean and sustainable energy resources; comparison between formations and mode of occurrences of various conventional hydrocarbon energy resources.

Unit - II

Oil Shale, Shale Gas, and Tar Sand

Oil Shale: Definition and prospect, geological conditions for formation of oil shale, oil shale recovery technology, ex-situ and in-situ extraction processes of shale oil, various retorting processes, processes leading to maximisation of shale oil production; **Shale Gas**: Definition and prospect, the conditions of formation of shale gas, debate over extraction of shale gas from the subsurface, environmental issues, American experience, Marcellus shale gas project – an example of success story of shale gas exploitation, methods of production, hydrofracturing, composition of fracking fluid, water management, shale gas – Indian perspective; **Tar Sand**: Definition and prospect, distinction between heavy oil and bitumen, mineralogy and properties of oil sand, elemental composition and properties of bitumen, methods of recovery of bitumen by mining and advanced in-situ processes.

Unit – III

Gas Hydrate

Definition, History of Hydrate R&D, prospect, types of methane hydrate deposits, chemistry and structure of natural methane hydrate, Necessary Conditions for Methane Hydrate Formation, typical conditions of methane hydrate formation in nature vis-à-vis different gas hydrate stability zones, physical properties of hydrates and ice, geology of methane hydrates, exploration for methane hydrates – geological, geochemical and geophysical, gas hydrate – Indian perspective.

Unit – IV

Introduction to Coal Bed Methane

Definition and prospect, CBM, CMM, and AMM; an Overview on CBM vs. Conventional Reservoir – Gas Composition, Adsorption, Water Production, Gas Flow, Rock Physical Properties, Gas Content, Coal Rank, Gas Production. Fundamentals of Coal Geology: Genesis of Coal; Major Stratigraphic Periods of Coal Formation; Gondwana and Tertiary Coals of India; Influence of Coal Properties; Coal Chemistry – Molecular Structure, Macerals, Lithotypes, Functional Groups, Proximate Analysis, Ultimate Analysis; Significance of Rank – Definition and Measurement, Vitrinite Reflectance Measurement, Physical

Hours – 5

Hours - 9

Hours – 5

Hours - 7

Properties, Volatiles Generated, Micropores; Cleat System and Natural Fracturing. Sorption: Principles of Adsorption – different types of isotherms, Langmuir Isotherm, Methane Retention and its Content Determination in Coalseams; The Isotherm for Recovery Prediction; Model of the Micropores – Pore Geometry, Carbon Molecular Sieves; Coal Sorption of Other Molecular Species – Swelling of Coal Matrix, Heavier Hydrocarbons, Carbon Dioxide and Nitrogen; Effects of Ash and Moisture on Methane Adsorption. Decline Curves. Hydraulic Fracturing of Coal seams: Need for Fracturing Coals; Unique Problems in Fracturing Coals; Types of Fracturing Fluids for Coal; In-Situ Conditions; Visual Observation of Fractures, Water Production and Disposal: Water Production Rates from Methane Wells; Chemical Content; Environmental Regulations. Economics of Coalbed Methane Recovery: Tax Credit; Measures of Profitability; Costs; Structured Resource Evaluation.

Total Hours – 26

Texts and References:

1. Zou, C et al (2013) Unconventional Petroleum Geology, Elsevier; 2. Max, M. D. (2003) Natural Gas Hydrate in Oceanic and Permafrost Environments, Kluwer Academic Publication; 3. Nash, K. M. (2010) Shale gas Development, Nova Science Publishers, Incorporated; 4. Rogers, R. (1994) Coal bed methane: principles and Practices, PTR Prentice Hall

	17BPE305 - Process Dynamics and Control										
	Те	achin	g Sch	eme		Examination Scheme					
т	т	D	C	Hrs/Week		Theory		Practical		Total	
	1	1			MS	ES	IA	LW	LE/Viva	Marks	
2	0	0	2	2	25	50	25	-	-	100	

Introduction to Process Dynamics and Control

Plant/Process, Sensors, Transmitters, Signal Conditioning, Feedback- Process Control Terminology: Manipulated Variables, Controlled Variables, Controlling Variables, Controller Efforts, set point /target Variables, Measured and Unmeasured Variables - Block diagram, Transfer Function, Importance of Negative and Positive Feedback - Introduction to industrial automation: Distributed Control System, SCADA, A/D, D/A, Data Acquisition.

Unit II

Process Modeling and Simulation

First Principle based Modeling (Conservation Laws) - Different types of mathematical representation of a process/system : Mathematical model in form of a differential equation , transfer function and state space equations - First Principle based modeling of Mechanical Systems: Rotational and Transational mechanical systems such as Spring-Mass-Damper, Suspension System etc., Electrical Systems: F-C analogy, F-V analogy, DC Motor, Electrical Systems Analogy with mechanical systems, Chemical Systems: Single Tank, Two Tank, Four Tank, CSTR etc., Electro-mechanical systems: electrically suspended ball - Linear Models and Deviation Variables - Linear Models and Deviation Variables: Taylor's series expansion and linearization, Concept of deviation variables, MATLAB exercise - Numerical Solution of linear and Non-linear Algebraic and Ordinary Differential Equations.

Unit III

Analysis of a Dynamic Behavior of a System

Time Response Analysis - Order and type of the system, Error, Poles, Zeros, ZPK Form, MATLAB functions, Standard Test Signals, Behavior of First Order System in response to standard test signals, Concept of time constant, Behavior of Second Order System - Time Response Specifications: Settling Time, Rise Time, peak time, Damping, dead time, speed of the response, Maximum Peak Overshoot - Special behavior of processes: Overshoot, Undershoot, Inverse Response, Integrating Process, Unstable systems, Minimum and Non-minimum Phase Behavior, Processes with dead time - Concept of Characteristic Equation, Routh-Hurwitz Criterion for stability analysis - Frequency Response Analysis - Frequency Response Specifications: Bandwidth, Gain cross-over frequency, Phase cross-over frequency, Gain Margin, phase Margin, cut off frequency, Resonance Peak etc.Stability analysis using Bode Plots, Polar Plots and Nyquist Plots

Unit IV

Industrial Automation

Conventional controller such as P, PI, PID controllers, tuning of PID controllers, Introduction to programmable logic controllers

Hours: 10

Hours: 3

Hours : 6

Texts and References:

- 1. B. A. Ogunnaike, W. H. Ray, "Process Dynamics, Modeling and Control", Oxford University Press, 1994.
- 2. Seborg, Edgar and Mellichamp, "Process Dynamics and Control", John Wiley, 2nd Edition, 2004.
- 3. J.F. Franklin, J.D. Powell, A. Emami-Naeini, "Feedback control of dynamic systems", Addison-Wesley Publishing Company, 1994.
- 4. B. Wayne Bequette, "Process Control: Modeling, Design, and Simulation", Prentice-Hall of India, 2006.
- 5. Katsuhiko Ogata, "Modern Control Engineering", Prentice-Hall, 3rd Edition, 2006.

	17BPE306 - Introduction to Petroleum Software												
	Т	eachir	ig Sch	eme		Exam Scheme							
т	L T	р	С	Hrs/Week	Theory			Practical		Total			
L		Г			MS	ES	IA	LW	LE/Viva	Marks			
0	0	2	1	2		50 50 10							

Week 1 and Week 2: Kingdom Suite: Seismic and Geological Interpretation Software

Optimize Interpretations, Drilling decisions and field development

Week 3: Petrel: Geophysics, Geology and Modelling

Prestack processing, Microseismic, Reservoir Elastic Modelling, 1D Petroleum System Modelling

Week 4: Petrel-RE

Production Forecasting, Reservoir and Dual Scale Modelling

Week 5: RISC/CRYSTAL BALL

Reserve Estimation

Week 6: Interactive Petrophysics

Petro physical and Multiwell interpretation

Week 7 and Week 8: Saphir (KAAPA)

Pressure Transient Analysis and Production Behaviour

Week 9 and Week 10: WELLCAT (Landmark) and WELL FLO

Casing Design, Drill string design, Production Design, Tube Design, Production Optimization, Nodal Analysis

Week 11: GOHFER Geomechanics Fracture Simulator, Hydraulic Fracturing: Design, Analysis and Optimization

Week 12: HTRI Heat Exchanger Design and Simulation, Design of industrial-scale heat transfer equipment

Week 13:CHEMCAD/ASPEN/HYSYS

Chemical Process Simulation, Project/Process Design and Optimization

	17BPE308 - Process Dynamics and Control Practical										
	Te	achin	g Sch	eme		Examination Scheme					
т	т	Р	С	Hrs/Week		Theory		Practical		Total	
L	1				MS	ES	IA	LW	LE/Viva	Marks	
0	0	2	1	2				50	50	100	

List of Experiments:

- 1. Experimention on PLC Dual Conveyer system control panel.
- 2. Single Board Heating System.
- 3. Verification of Kirchoff Law
- 4. Coupled Tank Interacting system / Quadruple Tank Work Station.
- 5. Process Instrumentation Trainer / Process control Trainer.
- 6. Industrial Plant Emulator
- 7. Control Moment Gyroscope.
- 8. Linear Inverted Pendulum.
- 9. Force Measurement using load cell / thermister .
- 10. Level Measurement using capacitive transducer.
- 11. Advanced control strategies for surfactant flooding in Enhanced Oil Recovery.
- 12. Rectilinear Apparatus study (Spring Mass Damper System)
- 13. Study of Conveyer Belt system..

					- Petroleun	n Engineeri	0			
	,	Teachi	ng Sch	eme			Exam	Scheme		-
L	Т	Р	С	Hrs/Week		Theory			actical	Total
					MS	ES	IA	LW	LE/Viva	Marks
0	0	2	1	2				50	50	100
W W W W W W W W W	eek 2: eek 3: eek 4:I eek 5:H eek 5 3 eek 6 a eek 8:H eek 9 eek 10 eek 11 eek 11	Core Ti Determi Determi Permeal and We Product: Determ Determ :Sucker : Study	rimmin ination ne the i bility m ek 7: S ivity Ra ine the g Equip Rod P the wo	g ready for Exp g and Swabbing of Effective po Permeability of leasurement by dudy the petrop atio Analysis an viscosity of oil pments umping System rking of Gas Li	g rosity of giv given samp using Gas P hysical prop d understan by using ca : A Case Stu ft system.	ven core san le by using i ermeameter perties of con ding the imp pillary visco	nple by satu Ruska Liqu re in core fl portance of	id Permear ooding app	neter paratus	